login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A102643
A006530(x)=2 is a local minimum if x=2^n. Running upward with argument x, the largest prime divisor should increase. The value of first peak is a(n).
5
3, 5, 11, 17, 17, 13, 43, 257, 257, 41, 683, 4099, 2731, 2731, 331, 65537, 65537, 262147, 174763, 174763, 61681, 199729, 2796203, 2796203, 4051, 9586981, 87211, 15790321, 15790321, 1073741827, 715827883, 715827883, 6700417, 26317, 86171
OFFSET
1,1
COMMENTS
We may call these terms "upward-zenith-primes" belonging to 2^n-s. They do not exceed next-primes after 2^n [A014210(n)].
LINKS
EXAMPLE
n=22: 2^22=4194304; largest prime divisors for n+j, j=0, 1, 2, ... are {2, 2113, 5419, 16981, 61681, 199729, 7109}. The first peak after 2^22=4194304 is a(22)=199729.
MATHEMATICA
Table[2 + Total@ TakeWhile[Differences@ Array[FactorInteger[#][[-1, 1]] &, 20, 2^n], # > 0 &], {n, 35}] (* Michael De Vlieger, Jul 31 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2005
STATUS
approved