login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A102644
A006530(x)=2 is a local minimum if x=2^n. Running downward with argument x started at 2^n, the largest prime divisor should increase. The value of first peak is a(n).
5
2, 3, 7, 13, 31, 61, 127, 127, 73, 1021, 89, 4093, 8191, 16381, 151, 257, 131071, 131071, 524287, 1048573, 337, 683, 178481, 16777213, 1801, 8191, 262657, 1877171, 2089, 46684427, 2147483647, 2147483647, 599479, 3360037, 6871947673, 283007
OFFSET
1,1
COMMENTS
We may call these terms "downward-zenith-primes" belonging to 2^n-s. They do not exceed previous-primes before 2^n [A014234(n)].
LINKS
EXAMPLE
n=20: 2^20=1048576; the largest prime divisors for arguments if running downward from 2^20 are as follows: {2,41,524287,1048573,73}.
The first lower peak before argument 2^20=1048576 is a(20)=1048573.
n=1: a(1)=2 the peak equals the central value because there are no prime divisors>0 below n=2^1=2.
MATHEMATICA
Table[2 + Total@ TakeWhile[Differences@ Map[FactorInteger[#][[-1, 1]] &,
TakeWhile[Range[2^n, 2^n - 20, -1], # > 0 &]], # > 0 &], {n, 36}] (* Michael De Vlieger, Jul 31 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2005
STATUS
approved