OFFSET
1,1
COMMENTS
We may call these terms "downward-zenith-primes" belonging to 2^n-s. They do not exceed previous-primes before 2^n [A014234(n)].
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..150
EXAMPLE
n=20: 2^20=1048576; the largest prime divisors for arguments if running downward from 2^20 are as follows: {2,41,524287,1048573,73}.
The first lower peak before argument 2^20=1048576 is a(20)=1048573.
n=1: a(1)=2 the peak equals the central value because there are no prime divisors>0 below n=2^1=2.
MATHEMATICA
Table[2 + Total@ TakeWhile[Differences@ Map[FactorInteger[#][[-1, 1]] &,
TakeWhile[Range[2^n, 2^n - 20, -1], # > 0 &]], # > 0 &], {n, 36}] (* Michael De Vlieger, Jul 31 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2005
STATUS
approved