login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102640
Compute the greatest prime factors (GPFs, A006530()) of j + 2^n for j = 0, 1, ..., L. a(n) is the maximal length L of such a sequence in which the greatest prime factors are increasing with increasing j.
4
2, 2, 4, 2, 3, 2, 2, 2, 3, 2, 2, 4, 2, 3, 2, 2, 3, 4, 2, 3, 3, 6, 2, 3, 2, 4, 2, 2, 3, 4, 2, 3, 3, 2, 2, 4, 2, 4, 2, 2, 2, 4, 2, 3, 4, 4, 2, 4, 2, 3, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 4, 4, 2, 4, 2, 3, 2, 2, 4, 4, 2, 3, 3, 4, 2, 2, 2, 3, 2, 4, 2, 3, 2, 2, 3, 2, 2, 2, 3, 4, 2, 4, 2, 3, 2, 2, 3
OFFSET
1,1
COMMENTS
A006530(2^n)=2 is a local minimum. Going either upward or downward with the argument, the greatest prime factors are increasing for a while.
EXAMPLE
For n = 12: 2^10 = 4096. The greatest prime factors of 4096, 4097, 4098, 4099 are as follows: {2, 241, 683, 4099}. A006530(4100) = 41 is already smaller than A006530(4099). Thus the length of increasing GPF sequence is 4 = a(12).
MATHEMATICA
With[{nn = 12}, Table[Function[k, 1 + LengthWhile[#, # > 0 &] &@ Differences@ Array[FactorInteger[#][[-1, 1]] &, nn, k]][2^n], {n, 105}]] (* Michael De Vlieger, Jul 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 21 2005
STATUS
approved