login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102105 a(n) = (19*5^n - 16*3^n + 1) / 4. 1
1, 12, 83, 486, 2645, 13872, 71303, 362346, 1829225, 9198612, 46150523, 231225006, 1157542205, 5791962552, 28972567343, 144901100466, 724620293585, 3623445841692, 18118262329763, 90594411012726, 452981353155365, 2264934660052032, 11324756983085783 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of the entries in the last row of the 3 X 3 matrix M^n, where M = {{1, 0, 0}, {2, 3, 0}, {3, 4, 5}}.

Sum of the entries in the second row of M^n = A048473(n).

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (9,-23,15).

FORMULA

a(n) = 9*a(n-1) - 23*a(n-2) + 15*a(n-3), a(0)=1,a(1)=12,a(2)=83 (derived from the minimal polynomial of the matrix M).

G.f.: (1 + 3*x - 2*x^2) / ((1 - x)*(1 - 3*x)*(1 - 5*x)). - Colin Barker, Mar 03 2017

E.g.f.: (exp(x) - 16*exp(3*x) + 19*exp(5*x))/4. - G. C. Greubel, Oct 27 2019

EXAMPLE

a(4) = 2645 = 9*486 - 23*83 + 15*12 = 9*a(3) - 23*a(2) + 15*a(1).

a(4) = 2645 since M^4 * {1, 1, 1} = {1, 161, 2645}, where 161 = A048473(4).

MAPLE

with(linalg): M[1]:=matrix(3, 3, [1, 0, 0, 2, 3, 0, 3, 4, 5]): for n from 2 to 23 do M[n]:=multiply(M[1], M[n-1]) od: 1, seq(multiply(M[n], matrix(3, 1, [1, 1, 1]))[3, 1], n=1..23);

seq((19*5^n -16*3^n +1)/4, n=0..30); # G. C. Greubel, Oct 27 2019

MATHEMATICA

Table[(19*5^n -16*3^n +1)/4, {n, 0, 30}] (* G. C. Greubel, Oct 27 2019 *)

PROG

(PARI) Vec((1 + 3*x - 2*x^2) / ((1 - x)*(1 - 3*x)*(1 - 5*x)) + O(x^30)) \\ Colin Barker, Mar 03 2017

(MAGMA) [(19*5^n -16*3^n +1)/4: n in [0..30]]; // G. C. Greubel, Oct 27 2019

(Sage) [(19*5^n -16*3^n +1)/4 for n in (0..30)] # G. C. Greubel, Oct 27 2019

(GAP) List([0..30], n-> (19*5^n -16*3^n +1)/4); # G. C. Greubel, Oct 27 2019

CROSSREFS

Cf. A000326, A048473, A094727.

Sequence in context: A290715 A175037 A252179 * A275743 A026949 A165127

Adjacent sequences:  A102102 A102103 A102104 * A102106 A102107 A102108

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Dec 30 2004

EXTENSIONS

Corrected by T. D. Noe, Nov 07 2006

Edited by N. J. A. Sloane, Dec 02 2006

New definition from Ralf Stephan, May 17 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)