login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252179
Number of length 3+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero.
1
12, 83, 264, 687, 1428, 2729, 4680, 7661, 11764, 17535, 25056, 35067, 47628, 63701, 83312, 107673, 136764, 172075, 213528, 262919, 320100, 387201, 463992, 552965, 653796, 769367, 899248, 1046739, 1211292, 1396653, 1602144, 1831985, 2085356
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 8*a(n-3) + 6*a(n-4) + 6*a(n-5) - 8*a(n-6) + 3*a(n-8) - a(n-9).
Empirical for n mod 2 = 0: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (11/2)*n^2 + (77/30)*n + 1.
Empirical for n mod 2 = 1: a(n) = (1/60)*n^5 + (17/16)*n^4 + (14/3)*n^3 + (39/8)*n^2 + (79/60)*n + (1/16).
Empirical g.f.: x*(12 + 47*x + 15*x^2 - 9*x^3 - 41*x^4 - 13*x^5 + 3*x^6 + 3*x^7 - x^8) / ((1 - x)^6*(1 + x)^3). - Colin Barker, Dec 01 2018
EXAMPLE
Some solutions for n=6:
..6....6....2....5....5....6....0....2....5....0....0....4....4....4....0....2
..0....0....0....5....5....1....3....1....3....1....1....4....5....0....3....1
..4....0....3....3....5....2....3....1....6....1....1....6....6....1....2....5
..4....2....0....0....0....0....4....5....6....1....2....6....3....2....2....6
..2....4....6....3....3....3....0....0....0....0....3....2....1....3....4....5
CROSSREFS
Row 3 of A252177.
Sequence in context: A239180 A290715 A175037 * A102105 A275743 A026949
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 15 2014
STATUS
approved