The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252180 Number of length 4+2 0..n arrays with the sum of the maximum minus the minimum of adjacent triples multiplied by some arrangement of +-1 equal to zero 1
 40, 369, 1872, 6361, 17092, 39109, 79672, 148673, 259248, 428045, 675436, 1027273, 1513112, 2169245, 3037220, 4166229, 5610160, 7435141, 9709732, 12516761, 15944392, 20095193, 25074784, 31012613, 38034620, 46293613, 55944576, 67167485 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 4 of A252177 LINKS R. H. Hardin, Table of n, a(n) for n = 1..94 FORMULA Empirical: a(n) = -a(n-1) +a(n-2) +5*a(n-3) +6*a(n-4) -2*a(n-5) -12*a(n-6) -16*a(n-7) -3*a(n-8) +17*a(n-9) +25*a(n-10) +13*a(n-11) -13*a(n-12) -25*a(n-13) -17*a(n-14) +3*a(n-15) +16*a(n-16) +12*a(n-17) +2*a(n-18) -6*a(n-19) -5*a(n-20) -a(n-21) +a(n-22) +a(n-23) Empirical for n mod 12 = 0: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (409/90)*n + 1 Empirical for n mod 12 = 1: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n + (4645/5184) Empirical for n mod 12 = 2: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (6647/1620)*n + (37/324) Empirical for n mod 12 = 3: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (69/64) Empirical for n mod 12 = 4: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (3761/810)*n - (35/81) Empirical for n mod 12 = 5: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n + (6181/5184) Empirical for n mod 12 = 6: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (3389/360)*n^2 + (863/180)*n + (5/4) Empirical for n mod 12 = 7: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (132259/12960)*n^2 + (91631/12960)*n - (1835/5184) Empirical for n mod 12 = 8: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12631/1296)*n^3 + (30341/3240)*n^2 + (3121/810)*n - (11/81) Empirical for n mod 12 = 9: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6253/648)*n^3 + (14411/1440)*n^2 + (10039/1440)*n + (149/64) Empirical for n mod 12 = 10: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (12695/1296)*n^3 + (31141/3240)*n^2 + (7927/1620)*n - (59/324) Empirical for n mod 12 = 11: a(n) = (1/60)*n^6 + (40169/12960)*n^5 + (46981/5184)*n^4 + (6221/648)*n^3 + (129059/12960)*n^2 + (81391/12960)*n - (299/5184) EXAMPLE Some solutions for n=6 ..6....3....4....1....6....2....0....5....1....2....4....1....3....0....3....4 ..6....0....5....3....4....3....3....4....3....1....4....3....4....2....3....2 ..2....6....2....1....2....3....5....0....1....3....1....6....1....5....4....6 ..0....3....5....5....0....2....1....6....2....3....3....1....2....3....1....2 ..5....6....5....3....5....1....4....6....0....1....4....6....4....1....0....0 ..3....6....2....3....1....3....3....1....6....1....1....3....5....3....2....0 CROSSREFS Sequence in context: A234913 A190312 A229532 * A008355 A229716 A221820 Adjacent sequences:  A252177 A252178 A252179 * A252181 A252182 A252183 KEYWORD nonn AUTHOR R. H. Hardin, Dec 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 18:42 EDT 2022. Contains 353824 sequences. (Running on oeis4.)