login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290715
Number of minimal edge covers in the n-barbell graph.
3
12, 82, 1540, 35786, 880372, 30032066, 1234252432, 57364282990, 3118120533196, 194664165928178, 13642997281164016, 1068856625530082390, 93052682387512347676, 8925752446376598352186, 937682295833817289298944, 107371680361648855572333662
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Minimal Edge Cover
FORMULA
a(n) = A053530(n)^2 + A053530(n-1)*(A053530(n-1) + 2 + 2*Sum{i=1..n-2} binomial(n-1,i)*A053530(i)). - Andrew Howroyd, Aug 10 2017
MATHEMATICA
b[n_] := n! Sum[1/k! (Binomial[k, n - k] 2^(k - n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i - j)/(i - j)! Binomial[k - j, n - i - k + j] 2^(i - j + k - n) (-1)^(k - j), {i, j, n - k + j}], {j, k}]), {k, n}]; Table[b[n]^2 + b[n - 1] (b[n - 1] + 2 + 2 Sum[Binomial[n - 1, i] b[i], {i, n - 2}]), {n, 3, 20}] (* Eric W. Weisstein, Aug 10 2017 *)
PROG
(PARI) \\ here b(n) is A053530
b(n)={n!*sum(k=1, n, (binomial(k, n-k)*2^(k-n)*(-1)^k + sum(j=1, k, binomial(k, j) *sum(i=j, n-k+j, j^(i-j)/(i-j)!*binomial(k-j, n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j))))/k!)}
a(n)={my(v=vector(n, i, b(i))); if(n<3, 0, v[n]*v[n]+v[n-1]*(v[n-1]+2+2*sum(i=1, n-2, binomial(n-1, i)*v[i])))} \\ Andrew Howroyd, Aug 10 2017
CROSSREFS
Cf. A053530.
Sequence in context: A163020 A164300 A239180 * A175037 A252179 A102105
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 09 2017
EXTENSIONS
a(6)-a(8) from Giovanni Resta, Aug 09 2017
Terms a(9) and beyond from Andrew Howroyd, Aug 10 2017
STATUS
approved