login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal edge covers in the n-barbell graph.
3

%I #20 Aug 10 2017 05:19:18

%S 12,82,1540,35786,880372,30032066,1234252432,57364282990,

%T 3118120533196,194664165928178,13642997281164016,1068856625530082390,

%U 93052682387512347676,8925752446376598352186,937682295833817289298944,107371680361648855572333662

%N Number of minimal edge covers in the n-barbell graph.

%H Andrew Howroyd, <a href="/A290715/b290715.txt">Table of n, a(n) for n = 3..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarbellGraph.html">Barbell Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a>

%F a(n) = A053530(n)^2 + A053530(n-1)*(A053530(n-1) + 2 + 2*Sum{i=1..n-2} binomial(n-1,i)*A053530(i)). - _Andrew Howroyd_, Aug 10 2017

%t b[n_] := n! Sum[1/k! (Binomial[k, n - k] 2^(k - n) (-1)^k + Sum[Binomial[k, j] Sum[j^(i - j)/(i - j)! Binomial[k - j, n - i - k + j] 2^(i - j + k - n) (-1)^(k - j), {i, j, n - k + j}], {j, k}]), {k, n}]; Table[b[n]^2 + b[n - 1] (b[n - 1] + 2 + 2 Sum[Binomial[n - 1, i] b[i], {i, n - 2}]), {n, 3, 20}] (* _Eric W. Weisstein_, Aug 10 2017 *)

%o (PARI) \\ here b(n) is A053530

%o b(n)={n!*sum(k=1, n, (binomial(k, n-k)*2^(k-n)*(-1)^k + sum(j=1, k, binomial(k, j) *sum(i=j, n-k+j, j^(i-j)/(i-j)!*binomial(k-j, n-i-k+j)*(1/2)^(n-i-k+j)*(-1)^(k-j))))/k!)}

%o a(n)={my(v=vector(n,i,b(i)));if(n<3,0,v[n]*v[n]+v[n-1]*(v[n-1]+2+2*sum(i=1,n-2,binomial(n-1,i)*v[i])))} \\ _Andrew Howroyd_, Aug 10 2017

%Y Cf. A053530.

%K nonn

%O 3,1

%A _Eric W. Weisstein_, Aug 09 2017

%E a(6)-a(8) from _Giovanni Resta_, Aug 09 2017

%E Terms a(9) and beyond from _Andrew Howroyd_, Aug 10 2017