OFFSET
1,3
COMMENTS
Numbers n such that (390*10^n - 21)/9 is prime.
Numbers n such that digit 4 followed by n >= 0 occurrences of digit 3 followed by digit 1 is prime.
a(30) > 10^5. - Robert Price, Mar 30 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A102988(n) - 1.
EXAMPLE
431 is prime, hence 1 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(390*10^# - 21)/9] &]
PROG
(PARI) a=41; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+21)
(PARI) for(n=0, 1500, if(isprime((390*10^n-21)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(26)-a(29) derived from A102988 by Robert Price, Mar 30 2015
STATUS
approved