login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) + 21 for n > 0.
1

%I #13 Jan 17 2019 13:44:06

%S 0,1,3,6,9,11,19,23,29,41,61,187,303,339,714,803,1039,1886,2078,2119,

%T 2259,2422,3318,5597,6071,22047,25712,28643,43352

%N Indices of primes in sequence defined by A(0) = 41, A(n) = 10*A(n-1) + 21 for n > 0.

%C Numbers n such that (390*10^n - 21)/9 is prime.

%C Numbers n such that digit 4 followed by n >= 0 occurrences of digit 3 followed by digit 1 is prime.

%C a(30) > 10^5. - Robert Price, Mar 30 2015

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/4/43331.htm#prime">Prime numbers of the form 433...331</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A102988(n) - 1.

%e 431 is prime, hence 1 is a term.

%t Select[Range[0, 100000], PrimeQ[(390*10^# - 21)/9] &]

%o (PARI) a=41;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+21)

%o (PARI) for(n=0,1500,if(isprime((390*10^n-21)/9),print1(n,",")))

%Y Cf. A000533, A002275, A102988.

%K nonn,hard,more

%O 1,3

%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E a(26)-a(29) derived from A102988 by _Robert Price_, Mar 30 2015