This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101724 Indices of primes in sequence defined by A(0) = 47, A(n) = 10*A(n-1) - 33 for n > 0. 2
 0, 2, 4, 5, 7, 14, 25, 52, 59, 96, 182, 204, 301, 395, 455, 466, 606, 827, 1859, 2742, 4272, 4780, 5711, 6037, 6636, 9221, 10831, 18864, 25847, 42246, 48546, 87564, 95587 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Numbers n such that (390*10^n + 33)/9 is prime. Numbers n such that digit 4 followed by n >= 0 occurrences of digit 3 followed by digit 7 is prime. Numbers corresponding to terms <= 827 are certified primes. a(34) > 10^5. - Robert Price, May 11 2015 REFERENCES Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. LINKS Makoto Kamada, Prime numbers of the form 433...337. FORMULA a(n) = A102989(n) - 1. EXAMPLE 4337 is prime, hence 2 is a term. MATHEMATICA Select[Range[0, 300], PrimeQ[(390*10^# + 33)/9] &] (* Robert Price, May 11 2015 *) PROG (PARI) a=47; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-33) (PARI) for(n=0, 1500, if(isprime((390*10^n+33)/9), print1(n, ", "))) CROSSREFS Cf. A000533, A002275, A102989. Sequence in context: A275368 A115883 A063508 * A123210 A019277 A127791 Adjacent sequences:  A101721 A101722 A101723 * A101725 A101726 A101727 KEYWORD nonn,hard,more AUTHOR Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004 EXTENSIONS More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008 a(27)-a(31) from Kamada data by Ray Chandler, Apr 30 2015 a(32)-a(33) from Robert Price, May 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:36 EDT 2019. Contains 328377 sequences. (Running on oeis4.)