|
|
A101722
|
|
Indices of primes in sequence defined by A(0) = 49, A(n) = 10*A(n-1) - 61 for n > 0.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers n such that (380*10^n + 61)/9 is prime.
Numbers n such that digit 4 followed by n >= 0 occurrences of digit 2 followed by digit 9 is prime.
Some of the larger entries may only correspond to probable primes.
Certified primality of number corresponding to term 2042 using Primo. - Ryan Propper, Jun 23 2005
a(5) > 10^5. - Robert Price, May 08 2015
|
|
REFERENCES
|
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Makoto Kamada, Prime numbers of the form 422...229.
Index entries for primes involving repunits.
|
|
FORMULA
|
a(n) = A102987(n+1) - 1.
|
|
EXAMPLE
|
4229 is prime, hence 2 is a term.
|
|
MATHEMATICA
|
Select[Range[0, 3000], PrimeQ[(380*10^# + 61)/9] &] (* Robert Price, May 08 2015 *)
|
|
PROG
|
(PARI) a=49; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a-61)
(PARI) for(n=0, 1500, if(isprime((380*10^n+61)/9), print1(n, ", ")))
|
|
CROSSREFS
|
Cf. A000533, A002275, A102987.
Sequence in context: A124361 A166339 A024034 * A004908 A275002 A004813
Adjacent sequences: A101719 A101720 A101721 * A101723 A101724 A101725
|
|
KEYWORD
|
nonn,bref,hard,more
|
|
AUTHOR
|
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004
|
|
EXTENSIONS
|
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
a(4) from Kamada link by Ray Chandler, Apr 24 2015
|
|
STATUS
|
approved
|
|
|
|