login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Indices of primes in sequence defined by A(0) = 49, A(n) = 10*A(n-1) - 61 for n > 0.
1

%I #14 Jan 17 2019 13:44:06

%S 2,2042,5966,39854

%N Indices of primes in sequence defined by A(0) = 49, A(n) = 10*A(n-1) - 61 for n > 0.

%C Numbers n such that (380*10^n + 61)/9 is prime.

%C Numbers n such that digit 4 followed by n >= 0 occurrences of digit 2 followed by digit 9 is prime.

%C Some of the larger entries may only correspond to probable primes.

%C Certified primality of number corresponding to term 2042 using Primo. - _Ryan Propper_, Jun 23 2005

%C a(5) > 10^5. - _Robert Price_, May 08 2015

%D Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/4/42229.htm#prime">Prime numbers of the form 422...229</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.

%F a(n) = A102987(n+1) - 1.

%e 4229 is prime, hence 2 is a term.

%t Select[Range[0, 3000], PrimeQ[(380*10^# + 61)/9] &] (* _Robert Price_, May 08 2015 *)

%o (PARI) a=49;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-61)

%o (PARI) for(n=0,1500,if(isprime((380*10^n+61)/9),print1(n,",")))

%Y Cf. A000533, A002275, A102987.

%K nonn,bref,hard,more

%O 1,1

%A _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 14 2004

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007

%E a(4) from Kamada link by _Ray Chandler_, Apr 24 2015