OFFSET
0,2
COMMENTS
The matrix inverse appears to be A128313. - R. J. Mathar, Mar 22 2013
Read as upper triangular matrix, this can be seen as "recurrences in A135356 applied to A023531" [Paul Curtz, Mar 03 2017]. - The columns are: A000079, A131577, A024495, A000749, A139761, ... Column n differs after the (n+1)-th nonzero term on from the binomial coefficients C(k,n). - M. F. Hasler, Mar 05 2017
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
T(n, k) = Sum_{i=0..n} if(mod(i+1, k+1)=0, binomial(n, i), 0).
Rows have g.f. x^k/((1-x)^(k+1)-x^(k+1)).
EXAMPLE
Rows begin
1;
2,1;
4,2,1;
8,4,3,1;
16,8,6,4,1;
...
MAPLE
A101508 := proc(n, k)
a := 0 ;
for i from 0 to n do
if modp(i+1, k+1) = 0 then
a := a+binomial(n, i) ;
end if;
end do:
return a;
end proc: # R. J. Mathar, Mar 22 2013
MATHEMATICA
t[n_, k_] := Sum[If[Mod[i + 1, k + 1] == 0, Binomial[n, i], 0], {i, 0, n}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
PROG
(PARI) T(n, k)=sum(i=0, n, if((i+1)%(k+1)==0, binomial(n, i))) \\ M. F. Hasler, Mar 05 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Dec 05 2004
STATUS
approved