login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100851
Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.
4
1, 2, 6, 4, 12, 36, 8, 24, 72, 216, 16, 48, 144, 432, 1296, 32, 96, 288, 864, 2592, 7776, 64, 192, 576, 1728, 5184, 15552, 46656, 128, 384, 1152, 3456, 10368, 31104, 93312, 279936, 256, 768, 2304, 6912, 20736, 62208, 186624, 559872, 1679616, 512, 1536, 4608, 13824, 41472, 124416, 373248, 1119744, 3359232, 10077696
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Smooth Number
FORMULA
T(n,0) = A000079(n).
T(n,1) = A007283(n) for n>0.
T(n,2) = A005010(n) for n>1.
T(n,n) = A000400(n) = A100852(n,n).
Sum_{k=0..n} T(n, k) = A016129(n).
T(2*n, n) = A001021(n). - Reinhard Zumkeller, Mar 04 2006
G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - Stefano Spezia, Apr 28 2024
From G. C. Greubel, Nov 11 2024: (Start)
Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
EXAMPLE
From Stefano Spezia, Apr 28 2024: (Start)
Triangle begins:
1;
2, 6;
4, 12, 36;
8, 24, 72, 216;
16, 48, 144, 432, 1296;
32, 96, 288, 864, 2592, 7776;
...
(End)
MATHEMATICA
A100851[n_, k_]= 2^n*3^k;
Table[A100851[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 11 2024 *)
PROG
(Magma)
A100851:= func< n, k | 2^n*3^k >;
[A100851(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 11 2024
(SageMath)
def A100851(n, k): return 2^n*3^k
flatten([[A100851(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 11 2024
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, Nov 20 2004
STATUS
approved