Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 11 2024 03:58:01
%S 1,2,6,4,12,36,8,24,72,216,16,48,144,432,1296,32,96,288,864,2592,7776,
%T 64,192,576,1728,5184,15552,46656,128,384,1152,3456,10368,31104,93312,
%U 279936,256,768,2304,6912,20736,62208,186624,559872,1679616,512,1536,4608,13824,41472,124416,373248,1119744,3359232,10077696
%N Triangle read by rows: T(n,k) = 2^n * 3^k, 0 <= k <= n, n >= 0.
%H G. C. Greubel, <a href="/A100851/b100851.txt">Rows n = 0..100 of the triangle, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%F T(n,0) = A000079(n).
%F T(n,1) = A007283(n) for n>0.
%F T(n,2) = A005010(n) for n>1.
%F T(n,n) = A000400(n) = A100852(n,n).
%F Sum_{k=0..n} T(n, k) = A016129(n).
%F T(2*n, n) = A001021(n). - _Reinhard Zumkeller_, Mar 04 2006
%F G.f.: 1/((1 - 2*x)*(1 - 6*x*y)). - _Stefano Spezia_, Apr 28 2024
%F From _G. C. Greubel_, Nov 11 2024: (Start)
%F Sum_{k=0..n} (-1)^k*T(n, k) = A053524(n+1).
%F Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*((1-(-1)^n)*A248337((n+1)/2) + (1 + (-1)^n)*A016149(n/2)).
%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n) *A051958((n+2)/2) + 2*(1-(-1)^n)*A051958((n+1)/2)). (End)
%e From _Stefano Spezia_, Apr 28 2024: (Start)
%e Triangle begins:
%e 1;
%e 2, 6;
%e 4, 12, 36;
%e 8, 24, 72, 216;
%e 16, 48, 144, 432, 1296;
%e 32, 96, 288, 864, 2592, 7776;
%e ...
%e (End)
%t A100851[n_, k_]= 2^n*3^k;
%t Table[A100851[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 11 2024 *)
%o (Magma)
%o A100851:= func< n,k | 2^n*3^k >;
%o [A100851(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 11 2024
%o (SageMath)
%o def A100851(n,k): return 2^n*3^k
%o flatten([[A100851(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 11 2024
%Y Cf. A000079, A000400, A001021, A003586, A005010, A007283, A016129.
%Y Cf. A016149, A051958, A053524, A100852, A248337.
%Y Cf. A065333(T(n, k))=1.
%K nonn,tabl,easy
%O 0,2
%A _Reinhard Zumkeller_, Nov 20 2004