login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010061
Binary self or Colombian numbers: numbers that cannot be expressed as the sum of distinct terms of the form 2^k+1 (k>=0), or equivalently, numbers not of form m + sum of binary digits of m.
46
1, 4, 6, 13, 15, 18, 21, 23, 30, 32, 37, 39, 46, 48, 51, 54, 56, 63, 71, 78, 80, 83, 86, 88, 95, 97, 102, 104, 111, 113, 116, 119, 121, 128, 130, 133, 135, 142, 144, 147, 150, 152, 159, 161, 166, 168, 175, 177, 180, 183, 185, 192, 200, 207, 209, 212, 215, 217
OFFSET
1,2
COMMENTS
No two consecutive values appear in this sequence (see Links). - Griffin N. Macris, May 31 2020
The asymptotic density of this sequence is (1/8) * (2 - Sum_{n>=1} 1/2^a(n))^2 = 0.252660... (A242403). - Amiram Eldar, Nov 28 2020
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24, pp. 179-180.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bolletino U. M. I. (7) 9-A (1995), 143-148.
LINKS
Max A. Alekseyev and N. J. A. Sloane, On Kaprekar's Junction Numbers, arXiv:2112.14365 [math.NT], 2021-2022; Journal of Combinatorics and Number Theory 12:3 (2022), 115-155.
G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers. II, Bollettino dell'Unione Matematica Italiana, 2-A (1999), 397-399.
MAPLE
# For Maple code see A230091. - N. J. A. Sloane, Oct 10 2013
MATHEMATICA
Table[n + Total[IntegerDigits[n, 2]], {n, 0, 300}] // Complement[Range[Last[#]], #]& (* Jean-François Alcover, Sep 03 2013 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A010061 (ZERO-POS 1 0 A228085))
(Haskell)
a010061 n = a010061_list !! (n-1)
a010061_list = filter ((== 0) . a228085) [1..]
-- Reinhard Zumkeller, Oct 13 2013
(PARI)
/* Gen(n, b) returns a list of the generators of n in base b. Written by Max Alekseyev (see Alekseyev et al., 2021).
For example, Gen(101, 10) returns [91, 101]. - N. J. A. Sloane, Jan 02 2022 */
{ Gen(u, b=10) = my(d, m, k);
if(u<0 || u==1, return([]); );
if(u==0, return([0]); );
d = #digits(u, b)-1;
m = u\b^d;
while( sumdigits(m, b) > u - m*b^d,
m--;
if(m==0, m=b-1; d--; );
);
k = u - m*b^d - sumdigits(m, b);
vecsort( concat( apply(x->x+m*b^d, Gen(k, b)),
apply(x->m*b^d-1-x, Gen((b-1)*d-k-2, b)) ) );
}
CROSSREFS
Complement of A228082, or equally, numbers which do not occur in A092391. Gives the positions of zeros (those occurring after a(0)) in A228085-A228087 and positions of ones in A227643. Leftmost column of A228083. Base-10 analog: A003052.
Sequence in context: A247787 A074165 A137821 * A280557 A266665 A249715
KEYWORD
nonn,base
EXTENSIONS
More terms from Antti Karttunen, Aug 17 2013
Better definition from Matthew C. Russell, Oct 08 2013
STATUS
approved