login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A099975
Bisection of A014137.
2
2, 9, 65, 626, 6918, 82500, 1033412, 13402697, 178405157, 2423307047, 33453694487, 467995871777, 6619846420553, 94520750408709, 1360510918810437, 19720133460129650, 287590328749420958, 4216819865806452984, 62127422576288648840, 919286657093271150630
OFFSET
0,1
LINKS
FORMULA
a(n) = sum(binomial(2k, k)/(k+1), k=0..2n+1). - Emeric Deutsch, Dec 20 2004
Recurrence: (n+1)*(2*n+1)*a(n) = 3*(2*n^2 + 15*n - 1)*a(n-1) + 6*(74*n^2 - 231*n + 164)*a(n-2) - 28*(4*n-7)*(4*n-5)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 2^(4*n+5/2)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
MAPLE
a:=n->sum(binomial(2*k, k)/(k+1), k=0..2*n+1): seq(a(n), n=0..20); # Emeric Deutsch, Dec 20 2004
MATHEMATICA
Table[Sum[Binomial[2k, k]/(k+1), {k, 0, 2*n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) a(n)=sum(k=0, 2*n+1, binomial(2*k, k)/(k+1)); \\ Joerg Arndt, May 12 2013
CROSSREFS
Cf. A000108.
Sequence in context: A071300 A062395 A352986 * A292976 A334315 A334263
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 20 2004
STATUS
approved