login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A099977
Bisection of Bell numbers, A000110.
4
1, 5, 52, 877, 21147, 678570, 27644437, 1382958545, 82864869804, 5832742205057, 474869816156751, 44152005855084346, 4638590332229999353, 545717047936059989389, 71339801938860275191172
OFFSET
0,2
FORMULA
E.g.f.: exp(-1)*Sum_{n>=0} n*exp(n^2*x)/n!. - Vladeta Jovovic, Aug 24 2006
a(n) = exp(-1) * Sum_{k>=0} k^(2*n+1)/k!. - Ilya Gutkovskiy, Jun 13 2019
MAPLE
G:=series(exp(exp(x)-1), x=0, 50): seq((2*n-1)!*coeff(G, x^(2*n-1)), n=1..18);
PROG
(Python)
from itertools import accumulate, islice
def A099977_gen(): # generator of terms
yield 1
blist, b = (1, 2), 1
while True:
for _ in range(2):
blist = list(accumulate(blist, initial=(b:=blist[-1])))
yield b
A099977_list = list(islice(A099977_gen(), 30)) # Chai Wah Wu, Jun 22 2022
CROSSREFS
Sequence in context: A223898 A210096 A076281 * A274257 A336609 A303000
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 19 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 07 2004
STATUS
approved