login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334315
E.g.f. A(x) satisfies: A(x) = x - Sum_{k>=2} p(k) * A(x)^k / k!, where p = A000041 (partition numbers).
1
1, -2, 9, -65, 653, -8432, 133188, -2488450, 53683569, -1313214351, 35916970957, -1086055854233, 35975402985863, -1295514629022924, 50391598721116365, -2105485003413499952, 94047072252968125326, -4472183077495496587696, 225565085807090517308839
OFFSET
1,2
COMMENTS
Exponential reversion of A000041 (partition numbers).
MATHEMATICA
nmax = 19; CoefficientList[InverseSeries[Series[Sum[PartitionsP[k] x^k/k!, {k, 1, nmax}], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 22 2020
STATUS
approved