login
A334312
Triangle read by rows: T(n,k) = Sum_{i=k..n} A191898(i,k).
4
1, 2, -1, 3, 0, -2, 4, -1, -1, -1, 5, 0, 0, 0, -4, 6, -1, -2, -1, -3, 2, 7, 0, -1, 0, -2, 3, -6, 8, -1, 0, -1, -1, 2, -5, -1, 9, 0, -2, 0, 0, 0, -4, 0, -2, 10, -1, -1, -1, -4, -1, -3, -1, -1, 4, 11, 0, 0, 0, -3, 0, -2, 0, 0, 5, -10, 12, -1, -2, -1, -2, 2, -1, -1, -2, 4, -9, 2
OFFSET
1,2
COMMENTS
A334314(n)/A334313(n) = Sum_{k=1..n} T(n,k)/k.
FORMULA
Let: f(n) = Sum_{ d divides n } d*mu(d) = A023900(n), then T(n,k) = Sum_{i=k..n} f(gcd(i,k)).
Recurrence 1:
T(n, 1) = n.
T(n, k) = [n >= k]*[k > 1]*(Sum_{j=0..n-k} Sum_{i=j+1..k-1} (T(k-1,i)-T(k,i)) -Sum_{i=n-k+1..n-1} T(i, k)).
Recurrence 2:
T(n, 1) = n.
T(n, k) = [n >= k]*(Sum_{i=n-k+1..k-1}T(k-1,i)-T(k,i)) + [n >= 2*k]*T(n-k,k).
EXAMPLE
Triangle begins:
1,
2, -1,
3, 0, -2,
4, -1, -1, -1,
5, 0, 0, 0, -4,
6, -1, -2, -1, -3, 2,
7, 0, -1, 0, -2, 3, -6,
8, -1, 0, -1, -1, 2, -5, -1,
9, 0, -2, 0, 0, 0, -4, 0, -2,
10, -1, -1, -1, -4, -1, -3, -1, -1, 4,
11, 0, 0, 0, -3, 0, -2, 0, 0, 5, -10,
12, -1, -2, -1, -2, 2, -1, -1, -2, 4, -9, 2,
...
MATHEMATICA
nn=14; f[n_] := Total[Divisors[n]*MoebiusMu[Divisors[n]]]; Flatten[Table[Table[Sum[f[GCD[i, k]], {i, k, n}], {k, 1, n}], {n, 1, nn}]]
CROSSREFS
Row sums give A000012.
Sequence in context: A318995 A217176 A335097 * A087469 A022328 A215344
KEYWORD
sign,tabl
AUTHOR
Mats Granvik, Apr 22 2020
STATUS
approved