login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309229 Square array read by upwards antidiagonals. See formula section for recurrence. 1
1, 2, 1, 3, 0, 1, 4, 1, 2, 1, 5, 0, 0, 0, 1, 6, 1, 1, 1, 2, 1, 7, 0, 2, 0, 3, 0, 1, 8, 1, 0, 1, 4, -2, 2, 1, 9, 0, 1, 0, 0, -3, 3, 0, 1, 10, 1, 2, 1, 1, -2, 4, 1, 2, 1, 11, 0, 0, 0, 2, 0, 5, 0, 0, 0, 1, 12, 1, 1, 1, 3, 1, 6, 1, 1, 1, 2, 1, 13, 0, 2, 0, 4, 0, 0, 0, 2, 0, 3, 0, 1, 14, 1, 0, 1, 0, -2, 1, 1, 0, -4, 4, -2, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

log(A003418(n)) = Sum_{k>=1} (T(n, k)/k - 1/k).

LINKS

Table of n, a(n) for n=1..105.

Mathematics Stack Exchange, Do these series converge to the von Mangoldt function?

FORMULA

Recurrence:

T(n, 1) = if n >= 1 then n, otherwise 0;

T(1, k) = 1;

T(n, k) = if(and(n > 1, k > 1) then If(n > k then T(n - k, k) else Sum_{i=0..n-1} T(n - 1, k - i) - Sum_{i=1..n-1} T(n, k - i)) else 0)

EXAMPLE

   1, 1, 1, 1, 1,  1, 1, 1, 1,  1,  1,  1,  1,  1, ...

   2, 0, 2, 0, 2,  0, 2, 0, 2,  0,  2,  0,  2,  0, ...

   3, 1, 0, 1, 3, -2, 3, 1, 0,  1,  3, -2,  3,  1, ...

   4, 0, 1, 0, 4, -3, 4, 0, 1,  0,  4, -3,  4,  0, ...

   5, 1, 2, 1, 0, -2, 5, 1, 2, -4,  5, -2,  5,  1, ...

   6, 0, 0, 0, 1,  0, 6, 0, 0, -5,  6,  0,  6,  0, ...

   7, 1, 1, 1, 2,  1, 0, 1, 1, -4,  7,  1,  7, -6, ...

   8, 0, 2, 0, 3,  0, 1, 0, 2, -5,  8,  0,  8, -7, ...

   9, 1, 0, 1, 4, -2, 2, 1, 0, -4,  9, -2,  9, -6, ...

  10, 0, 1, 0, 0, -3, 3, 0, 1,  0, 10, -3, 10, -7, ...

  11, 1, 2, 1, 1, -2, 4, 1, 2,  1,  0, -2, 11, -6, ...

  12, 0, 0, 0, 2,  0, 5, 0, 0,  0,  1,  0, 12, -7, ...

  13, 1, 1, 1, 3,  1, 6, 1, 1,  1,  2,  1,  0, -6, ...

  14, 0, 2, 0, 4,  0, 0, 0, 2,  0,  3,  0,  1,  0, ...

  ...

MATHEMATICA

Clear[nn, t, n, k]; nn = 14; t[n_, 1] = If[n >= 1, n, 0]; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[And[n > 1, k > 1], If[n > k, t[n - k, k], Sum[t[n - 1, k - i], {i, 0, n - 1}] - Sum[t[n, k - i], {i, 1, n - 1}]], 0]; TableForm[Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Flatten[Table[Table[t[n - k + 1, k], {k, 1, n}], {n, 1, nn}]]

CROSSREFS

Cf. A191898, A003418.

Sequence in context: A127094 A221642 A158906 * A143239 A158951 A126988

Adjacent sequences:  A309226 A309227 A309228 * A309230 A309231 A309232

KEYWORD

tabl,sign

AUTHOR

Mats Granvik, Aug 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 14:06 EST 2019. Contains 329149 sequences. (Running on oeis4.)