login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099551
Odd part of n modulo 10. Final digit of A000265(n).
9
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 1, 3, 3, 7, 5, 1, 7, 9, 9, 5, 1, 1, 3, 3, 5, 3, 7, 7, 9, 5, 1, 1, 3, 7, 5, 9, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 3, 9, 5, 1, 3, 3, 7, 5, 7, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 7, 9, 5, 1, 9, 3, 7, 5, 9, 7, 9, 9, 5, 1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 1, 3, 3, 7, 5, 3, 7, 9, 9, 5, 1, 1
OFFSET
1,3
LINKS
FORMULA
a(n) = A010879(A000265(n)).
G.f. g(x) satisfies: g(x) = g(x^2) + (x + 3*x^3 + 5*x^5 + 7*x^7 + 9*x^9)/(1-x^10). - Robert Israel, Aug 10 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5. - Amiram Eldar, Aug 29 2024
MAPLE
f:= n -> n/2^padic:-ordp(n, 2) mod 10:
map(f, [$1..200]); # Robert Israel, Aug 10 2018
MATHEMATICA
Mod[Table[Max[Select[Divisors[n], OddQ]], {n, 110}], 10] (* Harvey P. Dale, Jun 22 2017 *)
a[n_] := Mod[n / 2^IntegerExponent[n, 2], 10]; Array[a, 100] (* Amiram Eldar, Aug 29 2024 *)
PROG
(PARI) a(n)=(n>>valuation(n, 2))%10 \\ Charles R Greathouse IV, Dec 28 2012
KEYWORD
nonn,base,easy
AUTHOR
Ralf Stephan, Oct 23 2004
STATUS
approved