Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Aug 29 2024 09:15:53
%S 1,1,3,1,5,3,7,1,9,5,1,3,3,7,5,1,7,9,9,5,1,1,3,3,5,3,7,7,9,5,1,1,3,7,
%T 5,9,7,9,9,5,1,1,3,1,5,3,7,3,9,5,1,3,3,7,5,7,7,9,9,5,1,1,3,1,5,3,7,7,
%U 9,5,1,9,3,7,5,9,7,9,9,5,1,1,3,1,5,3,7,1,9,5,1,3,3,7,5,3,7,9,9,5,1,1
%N Odd part of n modulo 10. Final digit of A000265(n).
%H Robert Israel, <a href="/A099551/b099551.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A010879(A000265(n)).
%F G.f. g(x) satisfies: g(x) = g(x^2) + (x + 3*x^3 + 5*x^5 + 7*x^7 + 9*x^9)/(1-x^10). - _Robert Israel_, Aug 10 2018
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5. - _Amiram Eldar_, Aug 29 2024
%p f:= n -> n/2^padic:-ordp(n,2) mod 10:
%p map(f, [$1..200]); # _Robert Israel_, Aug 10 2018
%t Mod[Table[Max[Select[Divisors[n],OddQ]],{n,110}],10] (* _Harvey P. Dale_, Jun 22 2017 *)
%t a[n_] := Mod[n / 2^IntegerExponent[n, 2], 10]; Array[a, 100] (* _Amiram Eldar_, Aug 29 2024 *)
%o (PARI) a(n)=(n>>valuation(n,2))%10 \\ _Charles R Greathouse IV_, Dec 28 2012
%Y Cf. A000265, A010879.
%Y Cf. A099544, A099545, A099546, A099547, A099548, A099549, A099550.
%K nonn,base,easy
%O 1,3
%A _Ralf Stephan_, Oct 23 2004