login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099554
Decimal expansion of the constant x that satisfies x = exp(1/sqrt(x)).
2
2, 0, 2, 0, 7, 4, 7, 3, 5, 8, 6, 1, 1, 8, 5, 7, 6, 6, 8, 1, 1, 2, 6, 9, 5, 2, 8, 7, 2, 4, 7, 3, 2, 3, 6, 6, 4, 9, 9, 4, 3, 3, 1, 1, 3, 1, 4, 1, 6, 2, 5, 2, 9, 8, 9, 7, 3, 1, 7, 1, 1, 6, 0, 8, 2, 6, 9, 2, 8, 5, 7, 7, 0, 0, 8, 5, 3, 6, 0, 5, 7, 4, 4, 4, 0, 7, 9, 5, 0, 5, 7, 3, 5, 5, 2, 9, 6, 1, 1, 6, 9, 3, 5, 7, 0
OFFSET
1,1
COMMENTS
This constant arises from the series: S(n) = Sum_{k=0..2n} (n-[k/2])^k/k!. The asymptotic behavior of this series is given by: S(n) ~ c*x^n where c = (x+sqrt(x))/(1+2*sqrt(x)) = 0.8957126... and x = 2.0207473586... satisfies x = exp(1/sqrt(x)).
FORMULA
Equals 1/(4*A202356^2). - Vaclav Kotesovec, Oct 06 2020
EXAMPLE
x=2.02074735861185766811269528724732366499433113141625298973171160826928577...
To demonstrate how this constant describes the asymptotics of the sum:
S(n) = Sum_{k=0..2n} (n-[k/2])^k/k! ~ c*x^n
evaluate the sum at n=5:
S(5) = 1+ 5+ 4^2/2!+ 4^3/3!+ 3^4/4!+ 3^5/5!+ 2^6/6!+ 2^7/7!+ 1/8!+ 1/9!
= 782291/25920 = 30.1809799... = (0.89572199...)*x^5
and evaluate the sum at n=6:
S(6) = 1+ 6+ 5^2/2!+ 5^3/3!+ 4^4/4!+ 4^5/5!+ 3^6/6!+ 3^7/7!+ 2^8/8!+ 2^9/9!+ 1/10!+ 1/11!
= 608606683/9979200 = 60.9875223... = (0.89571298...)*x^6.
MATHEMATICA
RealDigits[x/.FindRoot[x==Exp[1/Sqrt[x]], {x, 2}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Jan 06 2013 *)
RealDigits[ 1/(4*ProductLog[1/2]^2), 10, 105] // First (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) solve(x=2, 2.1, x-exp(1/sqrt(x)))
CROSSREFS
Sequence in context: A136665 A047765 A068463 * A319697 A107729 A363025
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, Oct 22 2004
STATUS
approved