Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Oct 06 2020 02:39:37
%S 2,0,2,0,7,4,7,3,5,8,6,1,1,8,5,7,6,6,8,1,1,2,6,9,5,2,8,7,2,4,7,3,2,3,
%T 6,6,4,9,9,4,3,3,1,1,3,1,4,1,6,2,5,2,9,8,9,7,3,1,7,1,1,6,0,8,2,6,9,2,
%U 8,5,7,7,0,0,8,5,3,6,0,5,7,4,4,4,0,7,9,5,0,5,7,3,5,5,2,9,6,1,1,6,9,3,5,7,0
%N Decimal expansion of the constant x that satisfies x = exp(1/sqrt(x)).
%C This constant arises from the series: S(n) = Sum_{k=0..2n} (n-[k/2])^k/k!. The asymptotic behavior of this series is given by: S(n) ~ c*x^n where c = (x+sqrt(x))/(1+2*sqrt(x)) = 0.8957126... and x = 2.0207473586... satisfies x = exp(1/sqrt(x)).
%F Equals 1/(4*A202356^2). - _Vaclav Kotesovec_, Oct 06 2020
%e x=2.02074735861185766811269528724732366499433113141625298973171160826928577...
%e To demonstrate how this constant describes the asymptotics of the sum:
%e S(n) = Sum_{k=0..2n} (n-[k/2])^k/k! ~ c*x^n
%e evaluate the sum at n=5:
%e S(5) = 1+ 5+ 4^2/2!+ 4^3/3!+ 3^4/4!+ 3^5/5!+ 2^6/6!+ 2^7/7!+ 1/8!+ 1/9!
%e = 782291/25920 = 30.1809799... = (0.89572199...)*x^5
%e and evaluate the sum at n=6:
%e S(6) = 1+ 6+ 5^2/2!+ 5^3/3!+ 4^4/4!+ 4^5/5!+ 3^6/6!+ 3^7/7!+ 2^8/8!+ 2^9/9!+ 1/10!+ 1/11!
%e = 608606683/9979200 = 60.9875223... = (0.89571298...)*x^6.
%t RealDigits[x/.FindRoot[x==Exp[1/Sqrt[x]],{x,2},WorkingPrecision->120]][[1]] (* _Harvey P. Dale_, Jan 06 2013 *)
%t RealDigits[ 1/(4*ProductLog[1/2]^2), 10, 105] // First (* _Jean-François Alcover_, Feb 15 2013 *)
%o (PARI) solve(x=2,2.1,x-exp(1/sqrt(x)))
%Y Cf. A099555, A202356.
%K cons,nonn
%O 1,1
%A _Paul D. Hanna_, Oct 22 2004