login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099555
Triangle, read by rows, where T(n,k) = (n-floor(k/2))^k for k = 0..2*n - 1, with T(0,0) = 1.
3
1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 8, 1, 1, 1, 4, 9, 27, 16, 32, 1, 1, 1, 5, 16, 64, 81, 243, 64, 128, 1, 1, 1, 6, 25, 125, 256, 1024, 729, 2187, 256, 512, 1, 1, 1, 7, 36, 216, 625, 3125, 4096, 16384, 6561, 19683, 1024, 2048, 1, 1, 1, 8, 49, 343, 1296, 7776, 15625, 78125, 65536
OFFSET
0,5
COMMENTS
Row functions in y are given by: R_n(y) = Sum_{k=0..2n} (n-floor(k/2))^k*y^k/k!. Evaluated at y=1, the asymptotic behavior of the rows is given by: R_n(1) ~ c*r^n where c = (r+sqrt(r))/(1+2*sqrt(r)) = 0.8957126... and r = 2.0207473586... satisfies r = exp(1/sqrt(r)) -- see A099554 for the decimal expansion of this constant.
FORMULA
E.g.f.: ((1-x*cosh(sqrt(x)*y)) + sqrt(x)*sinh(sqrt(x)*y))/(1+x^2-2*x*cosh(sqrt(x)*y)).
EXAMPLE
The asymptotic behavior can be demonstrated at the 4th row function:
R_4(y) = 1 + 4*y + 9*y^2/2! + 27*y^3/3! + 16*y^4/4! + 32*y^5/5! + y^6/6! + y^7/7!;
R_4(1) = 14.93492... = (0.895684...)*r^4, where r = 2.0207473586...
Rows begin:
[1]
[1, 1],
[1, 2, 1, 1],
[1, 3, 4, 8, 1, 1],
[1, 4, 9, 27, 16, 32, 1, 1],
[1, 5, 16, 64, 81, 243, 64, 128, 1, 1],
[1, 6, 25, 125, 256, 1024, 729, 2187, 256, 512, 1, 1],
[1, 7, 36, 216, 625, 3125, 4096, 16384, 6561, 19683, 1024, 2048, 1, 1],
...
which can be derived from the square array A003992:
[1, 0, 0, 0, 0, 0, 0, ...],
[1, 1, 1, 1, 1, 1, 1, ...],
[1, 2, 4, 8, 16, 32, 64, ...],
[1, 3, 9, 27, 81, 243, 729, ...],
[1, 4, 16, 64, 256, 1024, 4096, ...],
[1, 5, 25, 125, 625, 3125, 15625, ...],
...
by shifting each column k down by floor(k/2) rows, and omitting the zeros coming from row 0 of A003992.
MAPLE
seq(print(`if`(n=0, 1, seq((n - floor(k/2))^k, k=0..2*n-1))), n=0..10); # Georg Fischer, Nov 21 2024
PROG
(PARI) T(n, k)=(n-k\2)^k
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Oct 22 2004
EXTENSIONS
Definition corrected by Georg Fischer, Nov 21 2024
STATUS
approved