login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where T(n,k) = (n-floor(k/2))^k for k = 0..2*n - 1, with T(0,0) = 1.
3

%I #14 Nov 21 2024 16:22:27

%S 1,1,1,1,2,1,1,1,3,4,8,1,1,1,4,9,27,16,32,1,1,1,5,16,64,81,243,64,128,

%T 1,1,1,6,25,125,256,1024,729,2187,256,512,1,1,1,7,36,216,625,3125,

%U 4096,16384,6561,19683,1024,2048,1,1,1,8,49,343,1296,7776,15625,78125,65536

%N Triangle, read by rows, where T(n,k) = (n-floor(k/2))^k for k = 0..2*n - 1, with T(0,0) = 1.

%C Row functions in y are given by: R_n(y) = Sum_{k=0..2n} (n-floor(k/2))^k*y^k/k!. Evaluated at y=1, the asymptotic behavior of the rows is given by: R_n(1) ~ c*r^n where c = (r+sqrt(r))/(1+2*sqrt(r)) = 0.8957126... and r = 2.0207473586... satisfies r = exp(1/sqrt(r)) -- see A099554 for the decimal expansion of this constant.

%F E.g.f.: ((1-x*cosh(sqrt(x)*y)) + sqrt(x)*sinh(sqrt(x)*y))/(1+x^2-2*x*cosh(sqrt(x)*y)).

%e The asymptotic behavior can be demonstrated at the 4th row function:

%e R_4(y) = 1 + 4*y + 9*y^2/2! + 27*y^3/3! + 16*y^4/4! + 32*y^5/5! + y^6/6! + y^7/7!;

%e R_4(1) = 14.93492... = (0.895684...)*r^4, where r = 2.0207473586...

%e Rows begin:

%e [1]

%e [1, 1],

%e [1, 2, 1, 1],

%e [1, 3, 4, 8, 1, 1],

%e [1, 4, 9, 27, 16, 32, 1, 1],

%e [1, 5, 16, 64, 81, 243, 64, 128, 1, 1],

%e [1, 6, 25, 125, 256, 1024, 729, 2187, 256, 512, 1, 1],

%e [1, 7, 36, 216, 625, 3125, 4096, 16384, 6561, 19683, 1024, 2048, 1, 1],

%e ...

%e which can be derived from the square array A003992:

%e [1, 0, 0, 0, 0, 0, 0, ...],

%e [1, 1, 1, 1, 1, 1, 1, ...],

%e [1, 2, 4, 8, 16, 32, 64, ...],

%e [1, 3, 9, 27, 81, 243, 729, ...],

%e [1, 4, 16, 64, 256, 1024, 4096, ...],

%e [1, 5, 25, 125, 625, 3125, 15625, ...],

%e ...

%e by shifting each column k down by floor(k/2) rows, and omitting the zeros coming from row 0 of A003992.

%p seq(print(`if`(n=0, 1, seq((n - floor(k/2))^k, k=0..2*n-1))), n=0..10); # _Georg Fischer_, Nov 21 2024

%o (PARI) T(n,k)=(n-k\2)^k

%Y Cf. A003992, A099554, A099556.

%K nonn,tabf

%O 0,5

%A _Paul D. Hanna_, Oct 22 2004

%E Definition corrected by _Georg Fischer_, Nov 21 2024