OFFSET
0,3
REFERENCES
H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.
FORMULA
T(n, n) = (2n+1)2^floor((n+1)/2), n >= 0.
2^-floor((n+2)/2)*T(n+1, k) = binomial(2n+3, 2k) - Sum_{j=k..n} binomial(2n+3, 2j+1)*2^-floor((j+3)/2)*T(j, k), k=0..n.
EXAMPLE
Triangle begins:
1
-1 6
2 -10 10
-17 84 -70 28
124 -612 504 -168 36
MATHEMATICA
T[n_, n_] := (2n + 1)2^Floor[(n + 1)/2]; T[n_, k_] := (Binomial[2n + 1, 2k] - Sum[ Binomial[2n + 1, 2j + 1]*2^-Floor[(j + 3)/2]*T[j, k], {j, k, n - 1}])(2^Floor[(n + 1)/2]); Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* Robert G. Wilson v, May 10 2005 *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Sep 21 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 24 2004
STATUS
approved