login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097474
Triangle T(n,k) read by rows: see formula lines for definition.
3
1, -1, 6, 2, -10, 10, -17, 84, -70, 28, 124, -612, 504, -168, 36, -2764, 13640, -11220, 3696, -660, 88, 43688, -215592, 177320, -58344, 10296, -1144, 104, -1859138, 9174480, -7545720, 2482480, -437580, 48048, -3640, 240, 51236656, -252842768, 207954880, -68414528, 12057760, -1322464, 99008, -5440
OFFSET
0,3
REFERENCES
H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.
FORMULA
T(n, n) = (2n+1)2^floor((n+1)/2), n >= 0.
2^-floor((n+2)/2)*T(n+1, k) = binomial(2n+3, 2k) - Sum_{j=k..n} binomial(2n+3, 2j+1)*2^-floor((j+3)/2)*T(j, k), k=0..n.
EXAMPLE
Triangle begins:
1
-1 6
2 -10 10
-17 84 -70 28
124 -612 504 -168 36
MATHEMATICA
T[n_, n_] := (2n + 1)2^Floor[(n + 1)/2]; T[n_, k_] := (Binomial[2n + 1, 2k] - Sum[ Binomial[2n + 1, 2j + 1]*2^-Floor[(j + 3)/2]*T[j, k], {j, k, n - 1}])(2^Floor[(n + 1)/2]); Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* Robert G. Wilson v, May 10 2005 *)
CROSSREFS
KEYWORD
sign,tabl,easy
AUTHOR
N. J. A. Sloane, Sep 21 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 24 2004
STATUS
approved