OFFSET
3,1
COMMENTS
Apparently, for p > 2 a prime, we have a(p) = 2*p. If n is not a prime, then let q be the smallest prime dividing n. phi(n) then has (q-1) as factor. Therefore (q-1)q is neither coprime to n nor phi(n). Since q is the smallest prime dividing n, we have a(n) < n. - Stefan Steinerberger, Jun 29 2008
MATHEMATICA
a = {}; For[n = 3, n < 80, n++, i = 2; While[Min[GCD[i, n], GCD[EulerPhi[n], i]] == 1, i++ ]; AppendTo[a, i]]; a (* Stefan Steinerberger, Jun 29 2008 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 28 2008
EXTENSIONS
More terms from Stefan Steinerberger, Jun 29 2008
a(78)-a(88) from Ray Chandler, Jun 24 2009
STATUS
approved