|
|
A097476
|
|
a(n) = Product_{i=0..n-1} ((2i)!)^2.
|
|
1
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) = determinant of n X n matrix m(i,j)=E(2i+2j), 0<=i,j<=n-1, where E(2k) is the (2k)-th signless Euler number in 1/cos(z) = Sum_{k>=0} E(2k)*z^(2k)/(2k)!.
|
|
REFERENCES
|
C. Krattenthaler, Advanced Determinant Calculus, p. 46
|
|
LINKS
|
Table of n, a(n) for n=1..7.
C. Krattenthaler, Advanced Determinant Calculus, Séminaire Lotharingien Combin. 42 ("The Andrews Festschrift") (1999), Article B42q, 67 pp.
|
|
MATHEMATICA
|
Table[Product[((2i)!)^2, {i, 0, n-1}], {n, 8}] (* Harvey P. Dale, Jul 05 2021 *)
|
|
PROG
|
(PARI) a(n)=prod(i=0, n-1, ((2*i)!)^2)
|
|
CROSSREFS
|
Sequence in context: A062407 A212799 A343695 * A047676 A280790 A079187
Adjacent sequences: A097473 A097474 A097475 * A097477 A097478 A097479
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Benoit Cloitre, Sep 18 2004
|
|
STATUS
|
approved
|
|
|
|