login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097476
a(n) = Product_{i=0..n-1} ((2i)!)^2.
1
1, 4, 2304, 1194393600, 1941728542064640000, 25569049282962188245401600000000, 5866627428836325123819714259080708096000000000000
OFFSET
1,2
COMMENTS
a(n) = determinant of n X n matrix m(i,j)=E(2i+2j), 0<=i,j<=n-1, where E(2k) is the (2k)-th signless Euler number in 1/cos(z) = Sum_{k>=0} E(2k)*z^(2k)/(2k)!.
REFERENCES
C. Krattenthaler, Advanced Determinant Calculus, p. 46
LINKS
C. Krattenthaler, Advanced Determinant Calculus, Séminaire Lotharingien Combin. 42 ("The Andrews Festschrift") (1999), Article B42q, 67 pp.
MATHEMATICA
Table[Product[((2i)!)^2, {i, 0, n-1}], {n, 8}] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) a(n)=prod(i=0, n-1, ((2*i)!)^2)
CROSSREFS
Sequence in context: A062407 A212799 A343695 * A047676 A280790 A079187
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Sep 18 2004
STATUS
approved