login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) read by rows: see formula lines for definition.
3

%I #10 Jul 26 2015 10:01:00

%S 1,-1,6,2,-10,10,-17,84,-70,28,124,-612,504,-168,36,-2764,13640,

%T -11220,3696,-660,88,43688,-215592,177320,-58344,10296,-1144,104,

%U -1859138,9174480,-7545720,2482480,-437580,48048,-3640,240,51236656,-252842768,207954880,-68414528,12057760,-1322464,99008,-5440

%N Triangle T(n,k) read by rows: see formula lines for definition.

%D H. W. Gould, Power sum identities for arbitrary symmetric arrays, SIAM J. Appl. Math., 17 (1969), 307-316.

%F T(n, n) = (2n+1)2^floor((n+1)/2), n >= 0.

%F 2^-floor((n+2)/2)*T(n+1, k) = binomial(2n+3, 2k) - Sum_{j=k..n} binomial(2n+3, 2j+1)*2^-floor((j+3)/2)*T(j, k), k=0..n.

%e Triangle begins:

%e 1

%e -1 6

%e 2 -10 10

%e -17 84 -70 28

%e 124 -612 504 -168 36

%t T[n_, n_] := (2n + 1)2^Floor[(n + 1)/2]; T[n_, k_] := (Binomial[2n + 1, 2k] - Sum[ Binomial[2n + 1, 2j + 1]*2^-Floor[(j + 3)/2]*T[j, k], {j, k, n - 1}])(2^Floor[(n + 1)/2]); Flatten[ Table[ T[n, k], {n, 0, 8}, {k, 0, n}]] (* _Robert G. Wilson v_, May 10 2005 *)

%Y Cf. A097578, A097716, A097749.

%K sign,tabl,easy

%O 0,3

%A _N. J. A. Sloane_, Sep 21 2004

%E More terms from _Emeric Deutsch_, Dec 24 2004