login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097327
Least positive integer m such that m*n has greater decimal digit length than n.
3
10, 5, 4, 3, 2, 2, 2, 2, 2, 10, 10, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 10
OFFSET
1,1
COMMENTS
For any positive base B >= 2 the corresponding sequence contains only terms from 2 to B inclusive so the corresponding sequence for binary is all 2s (A007395).
LINKS
FORMULA
a(n) = A097326(n) + 1.
a(n) = ceiling(10^A055642(n)/n). - Michael S. Branicky, Oct 05 2021
EXAMPLE
a(12) = 9 since 12 has two decimal digits and 9*12 = 108 has three (but 8*12 = 96 has only two).
MATHEMATICA
Table[Ceiling[10^IntegerLength[n]/n], {n, 100}] (* Paolo Xausa, Nov 02 2024 *)
PROG
(Python)
def a(n): return (10**len(str(n))-1)//n + 1
print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Oct 05 2021
(PARI) a(n) = my(m=1, sn=#Str(n)); while (#Str(m*n) <= sn, m++); m; \\ Michel Marcus, Oct 05 2021
CROSSREFS
Cf. A089186 (analog for decimal m+n), A080079 (analog for binary m+n), A097326.
Cf. A055642.
Sequence in context: A134167 A080461 A066578 * A226583 A007272 A061280
KEYWORD
base,easy,nonn
AUTHOR
Rick L. Shepherd, Aug 04 2004
STATUS
approved