Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 02 2024 18:00:01
%S 10,5,4,3,2,2,2,2,2,10,10,9,8,8,7,7,6,6,6,5,5,5,5,5,4,4,4,4,4,4,4,4,4,
%T 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
%U 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,10,10,10
%N Least positive integer m such that m*n has greater decimal digit length than n.
%C For any positive base B >= 2 the corresponding sequence contains only terms from 2 to B inclusive so the corresponding sequence for binary is all 2s (A007395).
%H Michael S. Branicky, <a href="/A097327/b097327.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A097326(n) + 1.
%F a(n) = ceiling(10^A055642(n)/n). - _Michael S. Branicky_, Oct 05 2021
%e a(12) = 9 since 12 has two decimal digits and 9*12 = 108 has three (but 8*12 = 96 has only two).
%t Table[Ceiling[10^IntegerLength[n]/n], {n, 100}] (* _Paolo Xausa_, Nov 02 2024 *)
%o (Python)
%o def a(n): return (10**len(str(n))-1)//n + 1
%o print([a(n) for n in range(1, 103)]) # _Michael S. Branicky_, Oct 05 2021
%o (PARI) a(n) = my(m=1, sn=#Str(n)); while (#Str(m*n) <= sn, m++); m; \\ _Michel Marcus_, Oct 05 2021
%Y Cf. A089186 (analog for decimal m+n), A080079 (analog for binary m+n), A097326.
%Y Cf. A055642.
%K base,easy,nonn
%O 1,1
%A _Rick L. Shepherd_, Aug 04 2004