login
A007272
Super ballot numbers: 60(2n)!/(n!(n+3)!).
(Formerly M4676)
17
10, 5, 6, 10, 20, 45, 110, 286, 780, 2210, 6460, 19380, 59432, 185725, 589950, 1900950, 6203100, 20470230, 68234100, 229514700, 778354200, 2659376850, 9148256364, 31667041260, 110248217720, 385868762020, 1357193576760, 4795417304552, 17015996887120, 60619488910365
OFFSET
0,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Emily Allen and Irina Gheorghiciuc, A Weighted Interpretation for the Super Catalan Numbers, J. Int. Seq. 17 (2014) # 14.10.7.
David Callan, A combinatorial interpretation for a super-Catalan recurrence, arXiv:math/0408117 [math.CO], 2004.
Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194
Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
FORMULA
G.f.: (11-32*x+9*sqrt(1-4*x))/(1-3*x+(1-x)*sqrt(1-4*x)).
E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = 60*BesselI(3, 2x)/x^3.
E.g.f.: (BesselI(0, 2*x)*(2*x+16*x^2)-BesselI(1, 2*x)*(2+6*x+16*x^2))*exp(2*x)/x^2.
Integral representation as the n-th moment of a positive function on [0, 4], in Maple notation : a(n) = int(x^n*1/2*(4-x)^(5/2)/Pi/x^(1/2), x=0..4). This representation is unique. - Karol A. Penson, Dec 04 2001
a(n) = 10*(2*n)!*[x^(2*n)](hypergeometric([],[4],x^2)). - Peter Luschny, Feb 01 2015
(n+3)*a(n) +2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 06 2018
a(n) = -(-4)^(3+n)*binomial(5/2, 3+n)/2. - Peter Luschny, Nov 04 2021
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 4/9 + 28*Pi/(3^5*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 38/1875 - 56*log(phi)/(5^4*sqrt(5)), where phi is the golden ratio (A001622). (End)
From Peter Bala, Mar 11 2023: (Start)
a(n) = Sum_{k = 0..2} (-1)^k*4^(2-k)*binomial(n,k)*Catalan(n+k) = 16*Catalan(n) - 8*Catalan(n+1) + Catalan(n+2), where Catalan(n) = A000108(n). Thus a(n) is an integer for all n.
a(n) is odd if n = 2^k - 3, k >= 2, else a(n) is even. (End)
MAPLE
seq(10*(2*n)!/(n!)^2/binomial(n+3, n), n=0..26); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Table[60(2n)!/(n!(n+3)!), {n, 0, 30}] (* Jean-François Alcover, Jun 02 2019 *)
PROG
(PARI) a(n)=if(n<0, 0, 60*(2*n)!/n!/(n+3)!) /* Michael Somos, Feb 19 2006 */
(PARI) {a(n)=if(n<0, 0, n*=2; n!*polcoeff( 10*besseli(3, 2*x+x*O(x^n)), n))} /* Michael Somos, Feb 19 2006 */
(Sage)
def A007272(n): return -(-4)^(3 + n)*binomial(5/2, 3 + n)/2
print([A007272(n) for n in range(30)]) # Peter Luschny, Nov 04 2021
CROSSREFS
Row 2 of the array A135573.
Sequence in context: A066578 A097327 A226583 * A061280 A030071 A147653
KEYWORD
nonn,easy
STATUS
approved