Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M4676 #55 Mar 13 2023 07:22:25
%S 10,5,6,10,20,45,110,286,780,2210,6460,19380,59432,185725,589950,
%T 1900950,6203100,20470230,68234100,229514700,778354200,2659376850,
%U 9148256364,31667041260,110248217720,385868762020,1357193576760,4795417304552,17015996887120,60619488910365
%N Super ballot numbers: 60(2n)!/(n!(n+3)!).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Matthew House, <a href="/A007272/b007272.txt">Table of n, a(n) for n = 0..1677</a>
%H E. Allen and I. Gheorghiciuc, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Allen/gheo.html">A Weighted Interpretation for the Super Catalan Numbers</a>, J. Int. Seq. 17 (2014) # 14.10.7.
%H D. Callan, <a href="https://arxiv.org/abs/math/0408117">A combinatorial interpretation for a super-Catalan recurrence</a>, arXiv:math/0408117 [math.CO], 2004.
%H I. M. Gessel, <a href="http://people.brandeis.edu/~gessel/homepage/papers/superballot.pdf">Super ballot numbers</a>, J. Symbolic Comp., 14 (1992), 179-194
%H Ira M. Gessel and Guoce Xin, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Gessel/xin.html">A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3.
%F G.f.: (11-32*x+9*sqrt(1-4*x))/(1-3*x+(1-x)*sqrt(1-4*x)).
%F E.g.f.: Sum_{n>=0} a(n)*x^(2n)/(2n)! = 60*BesselI(3, 2x)/x^3.
%F E.g.f.: (BesselI(0, 2*x)*(2*x+16*x^2)-BesselI(1, 2*x)*(2+6*x+16*x^2))*exp(2*x)/x^2.
%F Integral representation as the n-th moment of a positive function on [0, 4], in Maple notation : a(n) = int(x^n*1/2*(4-x)^(5/2)/Pi/x^(1/2), x=0..4). This representation is unique. - _Karol A. Penson_, Dec 04 2001
%F a(n) = 10*(2*n)!*[x^(2*n)](hypergeometric([],[4],x^2)). - _Peter Luschny_, Feb 01 2015
%F (n+3)*a(n) +2*(-2*n+1)*a(n-1)=0. - _R. J. Mathar_, Mar 06 2018
%F a(n) = -(-4)^(3+n)*binomial(5/2, 3+n)/2. - _Peter Luschny_, Nov 04 2021
%F From _Amiram Eldar_, Mar 24 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 4/9 + 28*Pi/(3^5*sqrt(3)).
%F Sum_{n>=0} (-1)^n/a(n) = 38/1875 - 56*log(phi)/(5^4*sqrt(5)), where phi is the golden ratio (A001622). (End)
%F From _Peter Bala_, Mar 11 2023: (Start)
%F a(n) = Sum_{k = 0..2} (-1)^k*4^(2-k)*binomial(n,k)*Catalan(n+k) = 16*Catalan(n) - 8*Catalan(n+1) + Catalan(n+2), where Catalan(n) = A000108(n). Thus a(n) is an integer for all n.
%F a(n) is odd if n = 2^k - 3, k >= 2, else a(n) is even. (End)
%p seq(10*(2*n)!/(n!)^2/binomial(n+3,n), n=0..26); # _Zerinvary Lajos_, Jun 28 2007
%t Table[60(2n)!/(n!(n+3)!), {n, 0, 30}] (* _Jean-François Alcover_, Jun 02 2019 *)
%o (PARI) a(n)=if(n<0, 0, 60*(2*n)!/n!/(n+3)!) /* _Michael Somos_, Feb 19 2006 */
%o (PARI) {a(n)=if(n<0, 0, n*=2; n!*polcoeff( 10*besseli(3,2*x+x*O(x^n)), n))} /* _Michael Somos_, Feb 19 2006 */
%o (Sage)
%o def A007272(n): return -(-4)^(3 + n)*binomial(5/2, 3 + n)/2
%o print([A007272(n) for n in range(30)]) # _Peter Luschny_, Nov 04 2021
%Y Row 2 of the array A135573.
%Y Cf. A001622, A002422, A007054, A348893.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, _Simon Plouffe_, _Ira M. Gessel_