OFFSET
3,1
COMMENTS
The area of an odd sided triangle is irrational. Proof: Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) The sides of an odd sided triangle are of the form 4k+1 or 4k+3.
All permutations of the remainders of sides 4k+r for the factors (c+b-a),(a-c+b),(a+c-b),(a+b+c) evaluate to 1 1 1 3 or 3 3 3 1 Thus the remainder of D ==(c+b-a)*(a-c+b)*(a+c-b)*(a+c+b) mod 4 is 3 => D is not square => Area is irrational.
LINKS
Eric Weisstein's World of Mathematics, Lemniscate Constant
Eric Weisstein's World of Mathematics, Gauss's Constant
Eric Weisstein's World of Mathematics, Magic Hexagon
FORMULA
Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) where a < b < c are the sides of a triangle. Floor(Area) is this sequence.
EXAMPLE
Triangle with sides 3,5,7 units has area = 6.4951905283832..sq units. 6 is the first entry in the table.
MATHEMATICA
fa[n_]:=Module[{s=Total[n]/2}, Floor[Sqrt[s(s-n[[1]])(s-n[[2]])(s- n[[3]])]]]; fa/@Partition[Range[3, 101, 2], 3, 1] (* Harvey P. Dale, Apr 25 2011 *)
PROG
(PARI) area(n) = { for(x=1, n, a=x+x+1; b=a+2; c=b+2; y=1/4*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)); print1(floor(y)", ") ) }
CROSSREFS
KEYWORD
nonn
AUTHOR
Cino Hilliard, Aug 08 2004
STATUS
approved