login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338894
Number of ordered pairs (x,y): 1 <= x, y <= n*n, such that x*y is a square.
3
1, 6, 17, 32, 57, 90, 129, 180, 241, 310, 377, 460, 565, 670, 781, 928, 1053, 1194, 1365, 1548, 1705, 1882, 2125, 2312, 2561, 2802, 3081, 3308, 3565, 3910, 4141, 4488, 4849, 5170, 5525, 5840, 6237, 6578, 7013, 7460
OFFSET
1,2
REFERENCES
The Finnish National Upper secondary Matriculation Examination Long Maths Problem #12 (Mar 18th, 2020) included finding all gridpoints in a [1..100]x[1..100] grid with an integer geometric mean sparked some national interest in gcd integer sequences and their generating algorithms.
LINKS
YLE (Finnish Broadcasting Corporation), 2020 kevät: matematiikka pitkä oppimäärä (In Finnish)
YLE (Finnish Broadcasting Corporation), Abitreenit, Matematiikka, pitkä oppimäärä (In Finnish; katso Tehtävä 12. Geometrisen keskiarvon todennäköisyyksiä, kohta 2)
FORMULA
a(n) = 2*A339026(n) + n^2.
a(n) = A132188(n^2). - Antti Karttunen, Nov 23 2020
PROG
(PARI) A338894(n) = sum(i=1, n*n, sum(j=1, n*n, issquare(i*j))); \\ (Naive implementation) - Antti Karttunen, Nov 23 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Edward Krogius, Nov 14 2020
STATUS
approved