login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301696
Partial sums of A219529.
3
1, 6, 17, 33, 54, 81, 113, 150, 193, 241, 294, 353, 417, 486, 561, 641, 726, 817, 913, 1014, 1121, 1233, 1350, 1473, 1601, 1734, 1873, 2017, 2166, 2321, 2481, 2646, 2817, 2993, 3174, 3361, 3553, 3750, 3953, 4161, 4374, 4593, 4817, 5046, 5281, 5521, 5766
OFFSET
0,2
FORMULA
From Colin Barker, Mar 26 2018: (Start)
G.f.: (1 + x)^4 / ((1 - x)^3*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. (End)
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + 8*(3*n*(n+1) +1))/9.
a(n) = ( A131713(n) + 8*A028896(n) + 8 )/9. (End)
MAPLE
A301696:= n-> (8*(3*n*(n+1) +1) + `mod`(n+2, 3) - `mod`(n+1, 3))/9;
seq(A301696(n), n=0..60); # G. C. Greubel, May 27 2020
MATHEMATICA
Table[(Mod[n+2, 3] - Mod[n+1, 3] + 8*(3*n*(n+1) +1))/9, {n, 0, 60}] (* G. C. Greubel, May 27 2020 *)
PROG
(PARI) Vec((1 + x)^4 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Mar 26 2018
(Sage) [(24*n*(n+1)+8 + (n+2)%3 - (n+1)%3 )/9 for n in (0..60)] # G. C. Greubel, May 27 2020
CROSSREFS
Cf. A219529.
Sequence in context: A130051 A338894 A237658 * A301727 A038795 A216892
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 25 2018
STATUS
approved