Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 08 2020 06:17:11
%S 1,6,17,33,54,81,113,150,193,241,294,353,417,486,561,641,726,817,913,
%T 1014,1121,1233,1350,1473,1601,1734,1873,2017,2166,2321,2481,2646,
%U 2817,2993,3174,3361,3553,3750,3953,4161,4374,4593,4817,5046,5281,5521,5766
%N Partial sums of A219529.
%H Colin Barker, <a href="/A301696/b301696.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,-2,1).
%F From _Colin Barker_, Mar 26 2018: (Start)
%F G.f.: (1 + x)^4 / ((1 - x)^3*(1 + x + x^2)).
%F a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4. (End)
%F From _G. C. Greubel_, May 27 2020: (Start)
%F a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + 8*(3*n*(n+1) +1))/9.
%F a(n) = ( A131713(n) + 8*A028896(n) + 8 )/9. (End)
%p A301696:= n-> (8*(3*n*(n+1) +1) + `mod`(n+2, 3) - `mod`(n+1, 3))/9;
%p seq(A301696(n), n=0..60); # _G. C. Greubel_, May 27 2020
%t Table[(Mod[n+2, 3] - Mod[n+1, 3] + 8*(3*n*(n+1) +1))/9, {n,0,60}] (* _G. C. Greubel_, May 27 2020 *)
%o (PARI) Vec((1 + x)^4 / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ _Colin Barker_, Mar 26 2018
%o (Sage) [(24*n*(n+1)+8 + (n+2)%3 - (n+1)%3 )/9 for n in (0..60)] # _G. C. Greubel_, May 27 2020
%Y Cf. A219529.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Mar 25 2018