Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Aug 29 2024 02:40:09
%S 6,17,31,48,69,93,121,152,187,225,267,312,360,412,468,526,589,655,724,
%T 797,873,953,1036,1122,1212,1306,1403,1503,1607,1715,1826,1940,2058,
%U 2179,2304,2432,2563,2698,2837,2979,3125,3274,3426,3582,3741,3904,4070
%N Floor of the area consecutive odd sided triangles.
%C The area of an odd sided triangle is irrational. Proof: Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) The sides of an odd sided triangle are of the form 4k+1 or 4k+3.
%C All permutations of the remainders of sides 4k+r for the factors (c+b-a),(a-c+b),(a+c-b),(a+b+c) evaluate to 1 1 1 3 or 3 3 3 1 Thus the remainder of D ==(c+b-a)*(a-c+b)*(a+c-b)*(a+c+b) mod 4 is 3 => D is not square => Area is irrational.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LemniscateConstant.html">Lemniscate Constant</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GausssConstant.html">Gauss's Constant</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MagicHexagon.html">Magic Hexagon</a>
%F Area = (1/4)*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)) where a < b < c are the sides of a triangle. Floor(Area) is this sequence.
%e Triangle with sides 3,5,7 units has area = 6.4951905283832..sq units. 6 is the first entry in the table.
%t fa[n_]:=Module[{s=Total[n]/2},Floor[Sqrt[s(s-n[[1]])(s-n[[2]])(s- n[[3]])]]]; fa/@Partition[Range[3,101,2],3,1] (* _Harvey P. Dale_, Apr 25 2011 *)
%o (PARI) area(n) = { for(x=1,n, a=x+x+1; b=a+2; c=b+2; y=1/4*sqrt((c+b-a)*(a-c+b)*(a+c-b)*(a+c+b)); print1(floor(y)", ") ) }
%Y Cf. A096378.
%K nonn
%O 3,1
%A _Cino Hilliard_, Aug 08 2004