The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096053 a(n) = (3*9^n - 1)/2. 12
 1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Generalized NSW numbers. - Paul Barry, May 27 2005 Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005 Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703. Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (10,-9). FORMULA From Paul Barry, May 27 2005: (Start) G.f.: (1+3*x)/(1-10*x+9*x^2); a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k; a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End) a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number. a(n) = 10*a(n-1) - 9*a(n-2). a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011 a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015 a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019 MATHEMATICA Table[(3*9^n - 1)/2, {n, 0, 18}] (* L. Edson Jeffery, Feb 13 2015 *) PROG (MAGMA) [(3*9^n-1)/2: n in [0..20]]; // Vincenzo Librandi, Nov 01 2011 (PARI) a(n)=(3*9^n-1)/2 \\ Charles R Greathouse IV, Sep 28 2015 (PARI) vector(30, n, n--; sigma(9^n)) \\ Altug Alkan, Nov 10 2015 CROSSREFS Cf. A083420, A096045, A096046, A096047, A096054. Cf. A107903, A138894 ((5*9^n-1)/4). Sequence in context: A091111 A196921 A317483 * A033470 A297594 A326569 Adjacent sequences:  A096050 A096051 A096052 * A096054 A096055 A096056 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Jun 18 2004 EXTENSIONS Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 25 19:28 EDT 2020. Contains 338012 sequences. (Running on oeis4.)