

A096055


Let {s(i)}, i=0,1,2,... be a sequence of finite sequences with terms s(i)(j), j=1,2,3,... Start with s(0)={1}. Then, for k>0, let s(k)=s(k1)Us(k1) if s(k1)(k)=0, s(k)=s(k1)U{0}Us(k1) if s(k1)(k)=1, where s(i)(j) is the jth element of s(i) and U denotes concatenation of the terms of the two operands. {a(n)} is the limit of s(k) as k goes to infinity.


2



1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suggested by Leroy Quet, Jul 18 2004.


LINKS

Table of n, a(n) for n=1..105.


EXAMPLE

Let s(0)={1}. Then
s(1)=s(0)U{0}Us(0)={1,0,1}, since s(0)(1)=1,
s(2)=s(2)Us(2)={1,0,1,1,0,1}, since s(1)(2)=0,
s(3)=s(2)U{0}Us(2)={1,0,1,1,0,1,0,1,0,1,1,0,1}, since s(2)(3)=1, etc.


CROSSREFS

Sequence in context: A104974 A024711 A128174 * A125144 A115198 A005614
Adjacent sequences: A096052 A096053 A096054 * A096056 A096057 A096058


KEYWORD

nonn


AUTHOR

John W. Layman, Jul 20 2004


STATUS

approved



