login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087599
Smallest nonzero n-digit term of A087597, or 0 if no such number exists.
4
1, 10, 105, 2211, 16836, 105111, 2220778, 14319276, 221098906, 1087061878, 11402689605, 223577504556, 1264725045100, 50869724563503, 111335989114503, 2399795843858155, 11141229266441550, 127955437456464996, 1070124037258522456
OFFSET
1,2
COMMENTS
Conjecture: No term is zero.
EXAMPLE
a(4) = 2211, A040115(2211) = 10.
PROG
(PARI) dd(k)={ local(kshf, res, dig, odig, p) ; kshf=k ; res=0 ; odig=kshf % 10 ; p=0 ; while(kshf>9, kshf=floor(kshf/10) ; dig=kshf % 10 ; res += 10^p*abs(dig-odig) ; odig=dig ; p++ ; ) ; return(res) ; } isA000217(n)={ if( issquare(1+8*n), return(1), return(0) ) ; } A000217(n)={ return(n*(n+1)/2) ; } ndigs(n)={ local(nshft, res) ; res=0 ; nshft=n; while(nshft>0, res++ ; nshft=floor(nshft/10) ; ) ; return(res) ; } isA087597(n)={ if( isA000217(n) && isA000217(dd(n)), return(1), return(0) ) ; } A087599(n)={ local(k, T) ; k=floor(-0.5+sqrt(0.25+2*10^(n-1))) ; T=A000217(k) ; if(ndigs(T)<n, k++ ) ; while(1, T=A000217(k) ; if(ndigs(T)>n, return(0) ) ; if( isA087597(T), return(T) ) ; k++ ; ) ; } { for(n=2, 21, print1(A087599(n), ", ") ; ) ; } \\ R. J. Mathar, Nov 19 2006
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 18 2003
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 19 2006
a(14)-a(18) from Donovan Johnson, May 08 2010
a(19) from Donovan Johnson, Jun 19 2011
a(1)=1 prepended by Max Alekseyev, Jul 27 2024
STATUS
approved