

A040115


Concatenate absolute values of differences between adjacent digits of n.


26



1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

10,4


COMMENTS

Let the decimal expansion of n be abcd...efg, say. Then a(n) has decimal expansion ab bc cd ... ef fg. Leading zeros in a(n) are omitted.
From M. F. Hasler, Nov 09 2019: (Start)
This sequence coincides with A080465 up to a(109) but is thereafter completely different.
It would make sense to define a(n) = 0 for n = 0, ..., 9.
Eric Angelini calls a(n) the "ghost" of the number n and considers iterations of n > n + a(n) depending on parity of a(n), cf. A329200 and A329201. (End)


LINKS

T. D. Noe, Table of n, a(n) for n = 10..10000
E. Angelini, The Ghost Iteration, Personal blog "Cinquante signes", Nov 2019


EXAMPLE

a(371) = 46, for example.
a(110) = 01 = 1, while A080465(110) = 10  1 = 9.  M. F. Hasler, Nov 09 2019


PROG

(PARI) apply( A040115(n)=fromdigits(abs((n=digits(n+!n))[^1]n[^1])), [10..199]) \\ Works for all n >= 0.  M. F. Hasler, Nov 09 2019


CROSSREFS

Cf. A037904, A040114, A040163, A040997.
Cf. A329200, A329201: iterations of n + a(n).
Sequence in context: A064834 A040163 A113608 * A080465 A151950 A104418
Adjacent sequences: A040112 A040113 A040114 * A040116 A040117 A040118


KEYWORD

nonn,base,easy


AUTHOR

Felice Russo


EXTENSIONS

Definition clarified by N. J. A. Sloane, Aug 19 2008
Name edited by M. F. Hasler, Nov 09 2019


STATUS

approved



