login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087600
Largest n-digit term of A087597, or 0 if no such number exists.
4
6, 78, 666, 7503, 82621, 828828, 7552441, 87311505, 557362578, 9901692450, 88893307128, 934624072410, 9836548472766, 99245275962778, 994337011743076, 5535761776004778, 89253915287999385, 865474782199906830, 9888742361454004621
OFFSET
1,1
COMMENTS
Conjecture: No term is zero.
EXAMPLE
a(4) = 7503, A040115(7503) = 253 is triangular.
PROG
(PARI) dd(k)={ local(kshf, res, dig, odig, p) ; kshf=k ; res=0 ; odig=kshf % 10 ; p=0 ; while(kshf>9, kshf=floor(kshf/10) ; dig=kshf % 10 ; res += 10^p*abs(dig-odig) ; odig=dig ; p++ ; ) ; return(res) ; } isA000217(n)={ if( issquare(1+8*n), return(1), return(0) ) ; } A000217(n)={ return(n*(n+1)/2) ; } ndigs(n)={ local(nshft, res) ; res=0 ; nshft=n; while(nshft>0, res++ ; nshft=floor(nshft/10) ; ) ; return(res) ; } isA087597(n)={ if( isA000217(n) && isA000217(dd(n)), return(1), return(0) ) ; } A087600(n)={ local(k, T) ; k=ceil(-0.5+sqrt(0.25+2*10^n)) ; T=A000217(k) ; if(ndigs(T)>n, k-- ) ; while(1, T=A000217(k) ; if(ndigs(T)<n, return(0) ) ; if( isA087597(T), return(T) ) ; k-- ; ) ; } { for(n=2, 21, print1(A087600(n), ", ") ; ) ; } \\ R. J. Mathar, Nov 19 2006
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 18 2003
EXTENSIONS
More terms from R. J. Mathar, Nov 19 2006
a(16)-a(18) from Donovan Johnson, Jul 28 2010
a(19) from Donovan Johnson, Jun 19 2011
a(1)=6 prepended by Max Alekseyev, Jul 27 2024
STATUS
approved