login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085611
Difference between A007678(2n)/(2n) and (n-1)^2.
1
0, 0, 0, 1, 6, 12, 32, 57, 73, 144, 210, 255, 394, 516, 520, 833, 1032, 1182, 1518, 1809, 1927, 2500, 2904, 3205, 3836, 4368, 4768, 5577, 6258, 6550, 7780, 8625, 9265, 10496, 11526, 12403, 13782, 15012, 15996, 17689, 19140, 20218, 22274, 23961, 25309, 27588, 29532, 31209, 33688
OFFSET
1,5
COMMENTS
If we define b(n) by b(n)=local(nr,fn,cn); nr=0; fn=floor(n/2); cn=ceiling(n/2); forstep (i=n,4,-2,nr=nr+(i-2)*fn+(i-4)*cn); nr then a(n) is given by (A007678(2n)-b(2n))/(2n).
This b(n) is given by (n-2)*(2*n^2 - 4*n + 3*(-1)^n - 3)/8 for n > 1. - R. J. Mathar, Oct 18 2013
FORMULA
a(n) = A007678(2*n)/(2*n) - (n-1)^2. - M. F. Hasler, Aug 06 2021
PROG
(PARI) apply( {A085611(n)=A007678(2*n)/(2*n)-(n-1)^2}, [1..40]) \\ M. F. Hasler, Aug 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Jul 08 2003
EXTENSIONS
The last term seemed to be corrupted and has now been deleted. - N. J. A. Sloane, Oct 29 2006
Edited and more terms from M. F. Hasler, Aug 06 2021
STATUS
approved