|
|
A085611
|
|
Difference between A007678(2n)/(2n) and (n-1)^2.
|
|
1
|
|
|
0, 0, 0, 1, 6, 12, 32, 57, 73, 144, 210, 255, 394, 516, 520, 833, 1032, 1182, 1518, 1809, 1927, 2500, 2904, 3205, 3836, 4368, 4768, 5577, 6258, 6550, 7780, 8625, 9265, 10496, 11526, 12403, 13782, 15012, 15996, 17689, 19140, 20218, 22274, 23961, 25309, 27588, 29532, 31209, 33688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
If we define b(n) by b(n)=local(nr,fn,cn); nr=0; fn=floor(n/2); cn=ceiling(n/2); forstep (i=n,4,-2,nr=nr+(i-2)*fn+(i-4)*cn); nr then a(n) is given by (A007678(2n)-b(2n))/(2n).
This b(n) is given by (n-2)*(2*n^2 - 4*n + 3*(-1)^n - 3)/8 for n > 1. - R. J. Mathar, Oct 18 2013
|
|
LINKS
|
Table of n, a(n) for n=1..49.
|
|
FORMULA
|
a(n) = A007678(2*n)/(2*n) - (n-1)^2. - M. F. Hasler, Aug 06 2021
|
|
PROG
|
(PARI) apply( {A085611(n)=A007678(2*n)/(2*n)-(n-1)^2}, [1..40]) \\ M. F. Hasler, Aug 05 2021
|
|
CROSSREFS
|
Cf. A007678, A006533, A000290.
Sequence in context: A096356 A065992 A263587 * A122608 A268283 A196992
Adjacent sequences: A085608 A085609 A085610 * A085612 A085613 A085614
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jon Perry, Jul 08 2003
|
|
EXTENSIONS
|
The last term seemed to be corrupted and has now been deleted. - N. J. A. Sloane, Oct 29 2006
Edited and more terms from M. F. Hasler, Aug 06 2021
|
|
STATUS
|
approved
|
|
|
|