OFFSET
1,1
COMMENTS
Fifth row of A083140.
Integers k such that gcd(11*k, 210) = 1.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
FORMULA
G.f.: 11*x*(x^48 +10*x^47 +2*x^46 +4*x^45 +2*x^44 +4*x^43 +6*x^42 +2*x^41 +6*x^40 +4*x^39 +2*x^38 +4*x^37 +6*x^36 +6*x^35 +2*x^34 +6*x^33 +4*x^32 +2*x^31 +6*x^30 +4*x^29 +6*x^28 +8*x^27 +4*x^26 +2*x^25 +4*x^24 +2*x^23 +4*x^22 +8*x^21 +6*x^20 +4*x^19 +6*x^18 +2*x^17 +4*x^16 +6*x^15 +2*x^14 +6*x^13 +6*x^12 +4*x^11 +2*x^10 +4*x^9 +6*x^8 +2*x^7 +6*x^6 +4*x^5 +2*x^4 +4*x^3 +2*x^2 +10*x +1) / (x^49 -x^48 -x +1). - Colin Barker, Feb 22 2013
a(n) = a(n-48) + 2310 = a(n-1) + a(n-48) - a(n-49). - Charles R Greathouse IV, Nov 19 2014
a(n) = 11*A008364(n).
EXAMPLE
a(2) = 11*11, a(3) = 11*13.
MATHEMATICA
11Select[ Range[210], GCD[ #, 2*3*5*7] == 1 & ]
Select[11*Range[0, 200], GCD[#, 210]==1&] (* Harvey P. Dale, Dec 23 2013 *)
PROG
(PARI) is(n)=gcd(n, 2310)==11 \\ Charles R Greathouse IV, Nov 19 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jun 15 2003
EXTENSIONS
a(47)-a(49) from Georg Fischer, Nov 07 2019
New name from Frank Ellermann, Feb 25 2020
STATUS
approved