login
A084780
a(n) = sum of absolute-valued coefficients of (1+3*x-x^2)^n.
8
1, 5, 21, 77, 291, 1119, 3523, 15007, 50923, 182669, 701121, 2379129, 8909361, 32490021, 106309861, 423990203, 1456199483, 5089398187, 19942506259, 65753622619, 252337832801, 903751067081, 3026099773993, 11771846189609
OFFSET
0,2
COMMENTS
The expansion of (1 + a*x - b*x^2)^n is: (1 + a*x - b*x^2)^n = Sum_{k=0..2*n} f(n, k)*x^k, where f(n, k) = (n!/(2*n-k)!) * (-b)^((k-n)/2) * (a^2 + 4*b)^(n/2) * LegendreP(n, n-k, a/sqrt(a^2 + 4*b)). - G. C. Greubel, Jun 04 2023
LINKS
FORMULA
a(n) = Sum_{k=0..2*n} abs(f(n, k)), where f(n, k) = (n!/(2*n-k)!) * i^(k-n)*(13)^(n/2)*LegendreP(n, n-k, 3/sqrt(13)).. - G. C. Greubel, Jun 04 2023
MATHEMATICA
Table[Total[Abs[CoefficientList[Expand[(1+3x-x^2)^n], x]]], {n, 0, 30}] (* Harvey P. Dale, Jan 04 2012 *)
PROG
(PARI) for(n=0, 40, S=sum(k=0, 2*n, abs(polcoeff((1+3*x-x^2)^n, k, x))); print1(S", "))
(Magma)
m:=40;
R<x>:=PowerSeriesRing(Integers(), 2*(m+2));
f:= func< n, k | Coefficient(R!( (1+3*x-x^2)^n ), k) >;
[(&+[ Abs(f(n, k)): k in [0..2*n]]): n in [0..m]]; // G. C. Greubel, Jun 04 2023
(SageMath)
def f(n, k):
P.<x> = PowerSeriesRing(QQ)
return P( (1+3*x-x^2)^n ).list()[k]
def a(n): return sum( abs(f(n, k)) for k in range(2*n+1) )
[a(n) for n in range(41)] # G. C. Greubel, Jun 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 14 2003
STATUS
approved