OFFSET
0,5
COMMENTS
a(n) = number of Dyck n-paths containing exactly one UUUD.
Conjecture: this is the Motzkin transform of the sequence of three zeros followed by A001651. - R. J. Mathar, Dec 11 2008
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
G.f. (x-1+(1-2*x)M)/(x(1-3*x)(1+x*M)) = Sum_{n>=0}a(n)x^n where M = (1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2) is the gf for Motzkin numbers (A001006); satisfies z^3 = (1 + z)(1 - 3z)( (1 - 3z + z^2)G + z^2(1 - 3z)G^2 ).
Recurrence: (n-3)*(n+2)*a(n) = (n+1)*(5*n-14)*a(n-1) - 3*(n-2)*(n-1)*a(n-2) - 9*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Mar 22 2014
a(n) ~ 3^n/2 * (1-5*sqrt(3)/(2*sqrt(Pi*n))). - Vaclav Kotesovec, Mar 22 2014
EXAMPLE
a(4) = 5 because UUUUDDDD, UUUDUDDD, UUUDDUDD, UDUUUDDD, UUUDDDUD
each contain one UUUD.
MATHEMATICA
CoefficientList[Series[(x-1+(1-2*x)*(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))/(x*(1-3*x)*(1+x*(1-x-(1-2*x-3*x^2)^(1/2))/(2*x^2))), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 22 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David Callan, Jul 25 2005
STATUS
approved